Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
In Vitro Cell Dev Biol Anim ; 60(4): 411-419, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587579

RESUMO

Sjogren's syndrome (SS) is an autoimmune disease. Its mechanism and treatment methods are unclear. The purpose of this study was to investigate the effects of rutin (Ru) on SS. Proteomics was used to detect differential proteins in the submandibular glands of normal mice and SS mice. Salivary secretion (SAS) and salivary gland index (SGI) were detected. Oxidative stress and inflammatory cytokine in submandibular glands were detected. The levels of NLRP3, ASC, Caspase-1, IL-1ß, and p-NF-κBp65 in submandibular gland tissues and submandibular gland cells of overexpressed calcium-sensing receptor (over-CaR) mice and overexpressed CaR primary submandibular gland cells (over-CaR-PSGs) were detected. In total, 327 differential proteins were identified in the submandibular gland tissues of SS mice compared to control mice. CaR was one of the most differential proteins and significantly increased compared to control mice. Ru could significantly increase SGI and SGI, and inhibit oxidative stress and inflammatory cytokine in submandibular glands. In addition, Ru was shown to further improve SS via regulation of the CaR/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/nuclear factor kappa-B (NF-κB) signal pathway. Overexpression of CaR counteracted partial activity of Ru. CaR may be an important target for the treatment of SS. In addition, Ru improved the SS via the CaR/NLRP3/NF-κB signal pathway. This study provides a basis for the treatments for SS.


Assuntos
NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Rutina , Transdução de Sinais , Síndrome de Sjogren , Glândula Submandibular , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico , Camundongos , Glândula Submandibular/metabolismo , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/patologia , Estresse Oxidativo/efeitos dos fármacos , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
2.
JACS Au ; 4(2): 730-743, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425902

RESUMO

Motivated by the desire for more sensitivity and stable surface-enhanced Raman scattering (SERS) substrates to trace detect chloramphenicol due to its high toxicity and ubiquity, MXene has attracted increasing attention and is encountering the high-priority task of further observably improving detection sensitivity. Herein, a universal SERS optimization strategy that incorporates NH4VO3 to induce few-layer MXenes assembling into multiporous nanosheet stacking structures was innovatively proposed. The synthesized Nb2C-based multiporous nanosheet stacking structure can achieve a low limit of detection of 10-10 M and a high enhancement factor of 2.6 × 109 for MeB molecules, whose detection sensitivity is improved by 3 orders of magnitude relative to few-layer Nb2C MXenes. Such remarkably enhanced SERS sensitivity mainly originates from the multiple synergistic contributions of the developed physical adsorption, the chemical enhancement, and the conspicuously improved electromagnetic enhancement arising from the intersecting MXenes. Furthermore, the improved SERS sensitivity endows Nb2C-based multiporous structures with the capability to achieve ultrasensitive detection of chloramphenicol with a wide linear range from 100 µg/mL to 1 ng/mL. We believe it is of great significance in conspicuously developing the SERS sensitivity of other MXenes with surficial negative charges and has a great promising perspective for the trace detection of other antibiotics in microsystems.

3.
ACS Appl Mater Interfaces ; 16(9): 11172-11184, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38388390

RESUMO

Lateral flow immunoassay (LFIA) has been widely used for the early diagnosis of diseases. However, conventional colorimetric LFIA possesses limited sensitivity, and the single-mode readout signal is easily affected by the external environment, leading to insufficient accuracy. Herein, multifunctional Fe3O4@MoS2@Pt nanotags with a unique "pompon mum"-like structure were triumphantly prepared, exhibiting excellent peroxidase (POD)-like activity, photothermal properties, and magnetic separation capability. Furthermore, the Fe3O4@MoS2@Pt nanotags were used to establish dual-mode LFIA (dLFIA) for the first time, enabling the catalytic colorimetric and photothermal dual-mode detection of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein (SARS-CoV-2 NP) and influenza A (H1N1). The calculated limits of detection (cLODs) of SARS-CoV-2 NP and H1N1 were 80 and 20 ng/mL in catalytic colorimetric mode and 10 and 8 ng/mL in photothermal mode, respectively, demonstrating about 100 times more sensitive than the commercial colloidal Au-LFIA strips (1 ng/mL for SARS-CoV-2 NP; 1 µg/mL for H1N1). The recovery rates of dLFIA in simulated nose swab samples were 95.2-103.8% with a coefficient of variance of 2.3-10.1%. These results indicated that the proposed dLFIA platform showed great potential for the rapid diagnosis of respiratory viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Nanopartículas Metálicas , Molibdênio , Catálise , Colorimetria , Imunoensaio , Ouro
4.
Clin Rheumatol ; 42(12): 3283-3288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755549

RESUMO

OBJECTIVE: The aim of this study was to investigate the expression levels of the serum transforming growth factor-ß1 (TGF-ß1) CXC type chemokine ligand 13 (CXCL13) in primary Sjogren's syndrome (pSS) patients and its correlation with disease severity. METHOD: Thirty patients with pSS admitted to Nanjing Traditional Chinese Medicine Affiliated Hospital of Nanjing University of Traditional Chinese Medicine from January 2021 to December 2022 were included as the pSS group, while 30 patients who underwent physical examination during the same period were included as the control group. The levels of TGF-ß1 and CXCL13 were detected. The diagnostic value of TGF-ß1 and CXCL13 for pSS was analyzed. Detection of serum TGF-ß1 and CXCL13 levels in pSS patients with different disease activities and lip gland pathological grading of pSS was done. We compared the correlation between TGF-ß1 and CXCL13 levels and disease activity and labial gland pathological grading in pSS patients. RESULT: The TGF-ß1 and CXCL13 levels in the pSS group were higher than those in the control group. The area under the receiver operating characteristic (ROC) curve (AUC) for TGF-ß1 and CXCL13 diagnosis of pSS was 0.790 (95% confidence interval (CI): 0.720~0.861) and 0.838 (95% CI: 0.778~0.898), respectively. The serum TGF-ß1 and CXCL13 levels of pSS patients significantly increase with the increase of disease activity and lip gland pathological grading. The TGF-ß1 and CXCL13 levels in pSS patients were positively correlated with disease activity and lip gland pathological grading. CONCLUSION: The levels of TGF-ß1 and CXCL13 in pSS patients were increased, and it was closely related to disease activity and lip gland pathological grading, which can be used as an effective indicator for the diagnosis of pSS. Key Points • The TGF-ß1 and CXCL13 levels in the pSS group were higher than those in the control group. • The TGF-ß1 and CXCL13 levels in pSS patients were positively correlated with disease activity and lip gland pathological grading. • TGF-ß1 and CXCL13 can be used as an effective indicator for the diagnosis of pSS.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/patologia , Fator de Crescimento Transformador beta1 , Quimiocinas CXC , Fator de Crescimento Transformador beta , Relevância Clínica , Ligantes , Fatores de Crescimento Transformadores
5.
ACS Sens ; 8(10): 3733-3743, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37675933

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic highlighted the need for rapid and accurate viral detection at the point-of-care testing (POCT). Compared with nucleic acid detection, lateral flow immunoassay (LFIA) is a rapid and flexible method for POCT detection. However, the sensitivity of LFIA limits its use for early identification of patients with COVID-19. Here, an innovative surface-enhanced Raman scattering (SERS)-LFIA platform based on two-dimensional black phosphorus decorated with Ag nanoparticles as important antigen-capturing and Raman-signal-amplification unit was developed for detection of SARS-CoV-2 variants within 5-20 min. The novel SERS-LFIA platform realized a limit of detection of 0.5 pg/mL and 100 copies/mL for N protein and SARS-CoV-2, demonstrating 1000 times more sensitivity than the commercial LFIA strips. It could reliably detect seven different SARS-CoV-2 variants with cycle threshold (Ct) < 38, with sensitivity and specificity of 97 and 100%, respectively, exhibiting the same sensitivity with q-PCR. Furthermore, the detection results for 48 SARS-CoV-2-positive nasopharyngeal swabs (Ct = 19.8-38.95) and 96 negative nasopharyngeal swabs proved the reliability of the strips in clinical application. The method also had good specificity in double-blind experiments involving several other coronaviruses, respiratory viruses, and respiratory medications. The results showed that the innovative SERS-LFIA platform is expected to be the next-generation antigen detection technology. The inexpensive amplification-free assay combines the advantages of rapid low-cost POCT and highly sensitive nucleic acid detection, and it is suitable for rapid detection of SARS-CoV-2 variants and other pathogens. Thus, it could replace existing antigens and nucleic acids to some extent.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reprodutibilidade dos Testes , Prata , Imunoensaio
6.
Chronic Obstr Pulm Dis ; 10(4): 400-411, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37603777

RESUMO

Background: Despite studies investigating the publication rates and factors influencing publication outcomes of clinical trials in some disease fields, there is a notable lack of research focusing on chronic obstructive pulmonary disease (COPD) clinical trials. This study aims to explore the characteristics of COPD-related clinical trials and identify factors associated with publication status and publication time. Methods: A systematic search was conducted on the World Health Organization International Clinical Trials Registry Platform on April 28, 2022, to identify completed interventional clinical trials related to COPD. Various trial features were analyzed, and factors influencing publication status and time were examined. Results: A total of 2577 completed interventional clinical trials focusing on COPD were identified. A total of 42.76% of trials enrolled ≤50 participants. The majority of trials were randomized (81.72%), blind (57.39%), parallel-assignment (59.14%), single-center (51.30%), multi-arm (83.86%), nonindustry funded (52.00%), and conducted for therapeutic purposes (73.11%). The 2-year cumulative publication rate was found to be 27.9%. The median time of study duration, dissemination lag, and publication lag were 17.27, 21.07, and 24.70 months, respectively. Multivariate analysis revealed that sample size, blind design, and study phase significantly influenced the likelihood of publication, while intervention model, primary purpose, study phase, funder, and study duration were significant factors affecting publication time. Conclusions: The findings highlight the inadequacy of large multi-center interventional clinical trials for COPD and indicate a low 2-year cumulative publication rate. Strengthening collaboration among investigators and adopting scientifically robust designs for larger phase 3 clinical trials are crucial to advancing COPD research and enhancing publication outcomes.

7.
J Nanobiotechnology ; 21(1): 149, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149605

RESUMO

Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Humanos , Análise Espectral Raman/métodos , SARS-CoV-2 , Nanoestruturas/química , Nanotecnologia , Técnicas Biossensoriais/métodos
8.
aBIOTECH ; 4(1): 1-7, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37220540

RESUMO

Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (BGCs) for such metabolism. The chromosome 4 BGC (c4BGC) is largely associated with momilactone production, in part due to the presence of the initiating syn-copalyl diphosphate (CPP) synthase gene (OsCPS4). Oryzalexin S is also derived from syn-CPP. However, the relevant subsequently acting syn-stemarene synthase gene (OsKSL8) is not located in the c4BGC. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the c4BGC catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 BGC (c7BGC), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct BGCs, in a pathway cross-stitched together by OsKSL8. Notably, in contrast to the widely conserved c4BGC, the c7BGC is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related syn-stemodene synthase OsKSL11 was originally considered to be distinct from OsKSL8, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that OsKSL8(j) is being replaced by OsKSL11 (OsKSL8i), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00092-3.

9.
Int J Environ Health Res ; : 1-9, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473101

RESUMO

A case-control study was conducted to examine the association of particulate matter exposure during the pre-natal (the first, second, and third trimesters. and the whole pregnancy) and post-natal periods (the first year after birth) with childhood asthma in Beijing, China. Multivariable logistic regressions showed that childhood asthma was significantly associated with exposures to PM2.5 and PM10 during the entire pregnancy, with ORs of 1.28(95%CI:1.06-1.56) and 1.21(95%CI:1.02-1.42), respectively. The highest association with a 10 µg/m3 increase in PM2.5 and PM10 were both seen for the second trimester, with ORs of 1.17(95% CI: 1.05-1.30) and 1.14(95% CI: 1.04-1.24). Subgroup analyses suggested that significant and positive effects were subject to be observed in children with a family history of atopy. This study added evidence that exposures to PM2.5 and PM10 during pregnancy might increase the risk of childhood asthma in seriously polluted area, highlighting stronger associations in the second trimester.

10.
Biosensors (Basel) ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291001

RESUMO

The outbreak of Corona Virus Disease 2019 (COVID-19) has again emphasized the significance of developing rapid and highly sensitive testing tools for quickly identifying infected patients. Although the current reverse transcription polymerase chain reaction (RT-PCR) diagnostic techniques can satisfy the required sensitivity and specificity, the inherent disadvantages with time-consuming, sophisticated equipment and professional operators limit its application scopes. Compared with traditional detection techniques, optical biosensors based on nanomaterials/nanostructures have received much interest in the detection of SARS-CoV-2 due to the high sensitivity, high accuracy, and fast response. In this review, the research progress on optical biosensors in SARS-CoV-2 diagnosis, including fluorescence biosensors, colorimetric biosensors, Surface Enhancement Raman Scattering (SERS) biosensors, and Surface Plasmon Resonance (SPR) biosensors, was comprehensively summarized. Further, promising strategies to improve optical biosensors are also explained. Optical biosensors can not only realize the rapid detection of SARS-CoV-2 but also be applied to judge the infectiousness of the virus and guide the choice of SARS-CoV-2 vaccines, showing enormous potential to become point-of-care detection tools for the timely control of the pandemic.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Teste para COVID-19 , COVID-19/diagnóstico , Vacinas contra COVID-19 , Técnicas Biossensoriais/métodos
11.
Mol Cell Neurosci ; 123: 103771, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064132

RESUMO

The precise control of proliferation and differentiation of neural progenitors is crucial for the development of the central nervous system. Fused in sarcoma (FUS) is an RNA-binding protein pathogenetically linked to Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) disease, yet the function of FUS on neurodevelopment is remained to be defined. Here we report a pivotal role of FUS in regulating the human cortical brain and spinal cord development via the human iPSCs-derived organoids. We found that depletion of FUS via CRISPR/CAS9 leads to an enhancement of neural proliferation and differentiation in cortical brain-organoids, but intriguingly an impairment of these phenotypes in spinal cord-organoids. In addition, FUS binds to the mRNA of a Trk tyrosine kinase receptor of neurotrophin-3 (Ntrk3) and regulates the expression of the different isoforms of Ntrk3 in a tissue-specific manner. Finally, alleviated Ntrk3 level via shRNA rescued the effects of FUS-knockout on the development of the brain- and spinal cord-organoids, suggesting that Ntrk3 is involved in FUS-regulated organoids developmental changes. Our findings uncovered the role of FUS in the neurodevelopment of the human CNS.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Humanos , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Organoides/metabolismo , Corpos de Inclusão/metabolismo , Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/metabolismo , Medula Espinal/metabolismo , Encéfalo/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35800007

RESUMO

This article investigated the role and the specific mechanism of Ruscogenin in Sjögren's syndrome (SS). NOD/ShiLtJ mice were treated with Ruscogenin, and acinar cells isolated from submandibular glands were treated with TNF-α, Ruscogenin and transfected with NLRP3 overexpression plasmid. Salivary flow rate (SFR) was measured at weeks 11, 13, 15, 17, and 20. Histological analysis of the submandibular glands was conducted by hematoxylin-eosin staining assay. IL-6, IL-17, TNF-α, and IL-1ß mRNA expression was detected through qRT-PCR. AQP 5, AQP 4, P2X7R, NLRP3, caspase 1, IL-1ß, Bax, and Bcl-2 protein levels were tested by western blot. Cell apoptosis was assessed through acridine orange and propidium iodide (AO/PI) staining assay and flow cytometry assay. Ruscogenin ameliorated the SFR and submandibular gland inflammation of NOD/ShiLtJ mice. Ruscogenin promoted the preservation of acinar cells and suppressed inflammation-related factors (P2X7R, NLRP3, caspase 1, and IL-1ß) in submandibular gland tissues of NOD/ShiLtJ mice. Ruscogenin inhibited acinar cell apoptosis in NOD/ShiLtJ mice and reversed TNF-α-induced apoptosis and inflammation of acinar cells. NLRP3 overexpression reversed the repressive effect of Ruscogenin on TNF-α-induced inflammation and apoptosis of acinar cells. Ruscogenin ameliorated SS by inhibiting NLRP3 inflammasome activation.

13.
Bioengineered ; 13(5): 11373-11387, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521747

RESUMO

Gastric cancer (GC) is one of the serious malignant diseases, accounting for several cases globally. The prevention, discovery and cure of GC depend on its molecular mechanism. In recent decades, it has been increasingly recognized that the long noncoding RNAs (lncRNAs) have been involved in GC progression. Therefore, the present study is aimed at identifying relevant lncRNAs that could act as biomarkers for GC prognosis. LncRNA HOXA10-AS is identified to be highly expressed in GC using the ENCORI database. Kaplan-Meier plot analysis indicated that the survival rate of the patient is associated with the expression of lncRNA HOXA10-AS. Interference of HOXA10-AS inhibited GC cell proliferation, migration, and invasion as well as facilitated GC apoptosis. The targets of HOXA10-AS included miR-6509-5p and Y-box binding protein 1 (YBX1). Specifically, HOXA10-AS downregulated miR-6509-5p in GC. An increase of miR-6509-5p inhibited GC cell growth. Meanwhile, miR-6509-5p interacted with YBX1 in GC. Together, lncRNA HOXA10-AS potentially acted as an oncogene through the lncRNA HOXA10-AS/miR-6509-5p/YBX1 signaling pathway in GC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Homeobox A10/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Proteína 1 de Ligação a Y-Box
14.
Bioconjug Chem ; 32(6): 1094-1104, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34013721

RESUMO

Antibody-drug conjugates (ADCs) are complex pharmaceutical molecules that combine monoclonal antibodies with biologically active drugs through chemical linkers. ADCs are designed to specifically kill disease cells by utilizing the target specificity of antibodies and the cytotoxicity of chemical drugs. However, the traditional ADCs were only applied to a few disease targets because of some limitations such as the huge molecular weight, the uncontrollable coupling reactions, and a single mechanism of action. Here we report a simple, one-pot, successive reaction method to produce dual payload conjugates with the site-specifically engineered cysteine and p-acetyl-phenylalanine using Herceptin (trastuzumab), an anti-HER2 antibody drug widely used for breast cancer treatment, as a tool molecule. This strategy enables antibodies to conjugate with two mechanistically distinct cytotoxic drugs through different functional groups sequentially, therefore, rendering the newly designed ADCs with functional diversity and the potential to overcome drug resistance and enhance the therapeutic efficacy.


Assuntos
Cisteína/química , Imunoconjugados/química , Cinética , Trastuzumab/química
15.
New Phytol ; 231(1): 85-93, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892515

RESUMO

Diterpenoids play important roles in rice microbial disease resistance as phytoalexins, as well as acting in allelopathy and abiotic stress responses. Recently, the casbane-type phytoalexin ent-10-oxodepressin was identified in rice, but its biosynthesis has not yet been elucidated. Here ent-10-oxodepressin biosynthesis was investigated via co-expression analysis and biochemical characterisation, with use of the CRISPR/Cas9 technology for genetic analysis. The results identified a biosynthetic gene cluster (BGC) on rice chromosome 7 (c7BGC), containing the relevant ent-casbene synthase (OsECBS), and four cytochrome P450 (CYP) genes from the CYP71Z subfamily. Three of these CYPs were shown to act on ent-casbene, with CYP71Z2 able to produce a keto group at carbon-5 (C5), while the closely related paralogues CYP71Z21 and CYP71Z22 both readily produce a keto group at C10. Together these C5 and C10 oxidases can elaborate ent-casbene to ent-10-oxodepressin (5,10-diketo-ent-casbene). OsECBS knockout lines no longer produce casbane-type diterpenoids and exhibit impaired resistance to the rice fungal blast pathogen Magnaporthe oryzae. Elucidation of ent-10-oxodepressin biosynthesis and the associated c7BGC provides not only a potential target for molecular breeding, but also, gives the intriguing parallels to the independently assembled BGCs for casbene-derived diterpenoids in the Euphorbiaceae, further insight into plant BGC evolution, as discussed here.


Assuntos
Diterpenos , Oryza , Sesquiterpenos , Ascomicetos , Família Multigênica , Oryza/genética , Proteínas de Plantas/genética , Fitoalexinas
16.
Small ; 17(14): e2006568, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33705596

RESUMO

Ensuring the stability of all-inorganic halide perovskite light-emitting diodes (LEDs) has become an obstacle that needs to be broken for commercial applications. Currently, lead halide perovskite CsPbX3 (X = Br, I, Cl) nanocrystals (NCs) are considered as alternative materials for future fluorescent lighting devices due to their combination of superior optical and electronic properties. However, the temperature of the surface of the LEDs will increase after long-term power-on work, which greatly affects the optical stability of CsPbX3 NCs. In order to overcome this bottleneck issue, a strategy of annealing perovskite materials in liquid is proposed, and the changes in photoluminescence and electroluminescence (EL) behaviors before and after annealing are studied. The results show that the luminescence stability of the annealed perovskite materials is significantly improved. Moreover, the EL stability of different perovskite LED devices under long-term operation is monitored, and the performance of the annealed materials is particularly outstanding. The results have proved that this convenient and low-cost liquid annealing strategy is suitable for large-scale postprocessing of perovskite materials, granting them stable fluorescence emission, which will bring a new dawn to the commercialization of next-generation optoelectronic devices.

17.
New Phytol ; 230(2): 698-709, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458815

RESUMO

Rice (Oryza sativa) is the staple food for over half the world's population. Drought stress imposes major constraints on rice yields. Intriguingly, labdane-related diterpenoid (LRD) phytoalexins in maize (Zea mays) affect drought tolerance, as indicated by the increased susceptibility of an insertion mutant of the class II diterpene cyclase ZmCPS2/An2 that initiates such biosynthesis. Rice also produces LRD phytoalexins, utilizing OsCPS2 and OsCPS4 to initiate a complex metabolic network. For genetic studies of rice LRD biosynthesis the fast-growing Kitaake cultivar was selected for targeted mutagenesis via CRISPR/Cas9, with an initial focus on OsCPS2 and OsCPS4. The resulting cps2 and cps4 knockout lines were further crossed to create a cps2x4 double mutant. Both CPSs also were overexpressed. Strikingly, all of the cv Kitaake cps mutants exhibit significantly increased susceptibility to drought, which was associated with reduced stomatal closure that was evident even under well-watered conditions. However, CPS overexpression did not increase drought resistance, and cps mutants in other cultivars did not alter susceptibility to drought, although these also exhibited lesser effects on LRD production. The results suggest that LRDs may act as a regulatory switch that triggers stomatal closure in rice, which might reflect the role of these openings in microbial entry.


Assuntos
Produtos Biológicos , Diterpenos , Oryza , Secas , Oryza/genética , Proteínas de Plantas/genética , Zea mays
18.
DNA Cell Biol ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147068

RESUMO

The emerging role of miRNA as regulators in esophageal squamous cell carcinoma (ESCC) progression has aroused great attention recently. In this study, the effects of miR-624-3p in ESCC progression were explored through cell proliferation, colony formation, cell cycle, and apoptosis analyses. Results showed that increased expression of miR-624-3p enhanced cancer cell viability, proliferation, migration, and invasion but inhibited apoptosis in ESCC. Moreover, luciferase reporter assay demonstrated that miR-624-3p bound to the 3'-untranslated region of phosphatase and tensin homologue (PTEN). Further study showed that miR-624-3p exerted its tumor promoting role through targeting PTEN. Taken together, these results elucidate the regulatory role of miR-624-3p in ESCC progression, shedding light on its possible clinical application in ESCC treatment.

19.
Stem Cell Res ; 49: 102027, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059129

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease affecting millions of elder people due to the degeneration of dopamine neurons in the striatum and substantia nigra. The clinical manifestations of PD include tremor, rigidity, bradykinesia and postural instability. Studying PD is challenging due to two obstacles: 1) disease models such as primary neurons or animal models usually couldn't recapitulate the disease phenotype, and 2) accessibility of human autopsied brain samples is very limited if not impossible. Induced pluripotent stem cells (iPSCs)-derived neuronal cells from patients emerge as an ideal in vitro model for disease modeling and drug development. Here we describe a cell density-dependent method for preparing functional hiPSC-derived dopamine neurons (iDAs) with ~90% purity (TH-positive cells). iDAs derived from PD patient exhibit the disease-related phenotypes, for example, slowed morphogenesis, reduced dopamine release, impaired mitochondrial function, and α-synuclein accumulation as early as 35 days after induction. Furthermore, we found that the effects of cell density are different between iDA development stages, whereas high cell density increases stress for early neural progenitor cells (NPCs), but are neural-protective for mature iDAs, high density also favors morphogenesis. Hence, using stage and density-dependent strategies we can obtain high quality iDAs, which are critical for disease modeling, drug development and cell replacement therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Animais , Neurônios Dopaminérgicos , Humanos , alfa-Sinucleína
20.
New Phytol ; 227(3): 930-943, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32187685

RESUMO

Lonicera japonica is a widespread member of the Caprifoliaceae (honeysuckle) family utilized in traditional medical practices. This twining vine honeysuckle also is a much-sought ornamental, in part due to its dynamic flower coloration, which changes from white to gold during development. The molecular mechanism underlying dynamic flower coloration in L. japonica was elucidated by integrating whole genome sequencing, transcriptomic analysis and biochemical assays. Here, we report a chromosome-level genome assembly of L. japonica, comprising nine pseudochromosomes with a total size of 843.2 Mb. We also provide evidence for a whole-genome duplication event in the lineage leading to L. japonica, which occurred after its divergence from Dipsacales and Asterales. Moreover, gene expression analysis not only revealed correlated expression of the relevant biosynthetic genes with carotenoid accumulation, but also suggested a role for carotenoid degradation in L. japonica's dynamic flower coloration. The variation of flower color is consistent with not only the observed carotenoid accumulation pattern, but also with the release of volatile apocarotenoids that presumably serve as pollinator attractants. Beyond novel insights into the evolution and dynamics of flower coloration, the high-quality L. japonica genome sequence also provides a foundation for molecular breeding to improve desired characteristics.


Assuntos
Lonicera , Carotenoides , Flores/genética , Perfilação da Expressão Gênica , Lonicera/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA